Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
J Virol ; 98(4): e0004324, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38497664

RESUMO

Human adenoviruses (HAdVs) are causative agents of morbidity and mortality throughout the world. These double-stranded DNA viruses are phylogenetically classified into seven different species (A-G). HAdV-G52, originally isolated in 2008 from a patient presenting with gastroenteritis, is the sole human-derived member of species G. Phylogenetic analysis previously suggested that HAdV-G52 may have a simian origin, indicating a potential zoonotic spillover into humans. However, evidence of HAdV-G52 in either human or simian populations has not been reported since. Here, we describe the isolation and in vitro characterization of rhesus (rh)AdV-69, a novel simian AdV with clear evidence of recombination with HAdV-G52, from the stool of a rhesus macaque. Specifically, the rhAdV-69 hexon capsid protein is 100% identical to that of HAdV-G52, whereas the remainder of the genome is most similar to rhAdV-55, sharing 95.36% nucleic acid identity. A second recombination event with an unknown adenovirus (AdV) is evident at the short fiber gene. From the same sample, we also isolated a second, highly related recombinant AdV (rhAdV-68) that harbors a distinct hexon gene but nearly identical backbone compared to rhAdV-69. In vitro, rhAdV-68 and rhAdV-69 demonstrate comparable growth kinetics and tropisms in human cell lines, nonhuman cell lines, and human enteroids. Furthermore, we show that coinfection of highly related AdVs is not unique to this sample since we also isolated coinfecting rhAdVs from two additional rhesus macaque stool samples. Our data collectively contribute to elucidating the origins of HAdV-G52 and provide insights into the frequency of coinfections and subsequent recombination in AdV evolution.IMPORTANCEUnderstanding the host origins of adenoviruses (AdVs) is critical for public health as transmission of viruses from animals to humans can lead to emergent viruses. Recombination between animal and human AdVs can also produce emergent viruses. HAdV-G52 is the only human-derived member of the HAdV G species. It has been suggested that HAdV-G52 has a simian origin. Here, we isolated from a rhesus macaque, a novel rhAdV, rhAdV-69, that encodes a hexon protein that is 100% identical to that of HAdV-G52. This observation suggests that HAdV-G52 may indeed have a simian origin. We also isolated a highly related rhAdV, differing only in the hexon gene, from the same rhesus macaque stool sample as rhAdV-69, illustrating the potential for co-infection of closely related AdVs and recombination at the hexon gene. Furthermore, our study highlights the critical role of whole-genome sequencing in understanding AdV evolution and monitoring the emergence of pathogenic AdVs.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Adenovirus dos Símios , Animais , Humanos , Adenovirus dos Símios/genética , Macaca mulatta , Filogenia , Zoonoses , Adenoviridae/genética
2.
Microbiol Spectr ; 11(6): e0179423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37877750

RESUMO

IMPORTANCE: The essential goal of vaccination is to generate potent and long-term protection against diseases. Several factors including vaccine vector, delivery route, and boosting regimen influence the outcome of prime-boost immunization approaches. The immunization regimens by constructing a novel simian adenovirus-vectored COVID-19 vaccine and employing combination of intranasal and intramuscular inoculations could elicit mucosal neutralizing antibodies against five mutant strains in the respiratory tract and strong systemic immunity. Immune protection could last for more than 32 weeks. Vectored vaccine construction and immunization regimens have positively impacted respiratory disease prevention.


Assuntos
Adenovirus dos Símios , COVID-19 , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Vetores Genéticos , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunidade nas Mucosas , Adenoviridae/genética
3.
J Virol ; 97(10): e0101423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712705

RESUMO

IMPORTANCE: Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.


Assuntos
Adenovirus dos Símios , Terapia Genética , Vetores Genéticos , Vacinas , Animais , Humanos , Adenovírus Humanos/genética , Adenovirus dos Símios/genética , Vetores Genéticos/genética , Células HEK293 , Macaca/genética
4.
Med ; 4(10): 668-686.e7, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37572659

RESUMO

BACKGROUND: RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS: A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS: Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS: The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING: Medical Research Council, London, UK.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adenovirus dos Símios , Anticorpos Antivirais , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Raiva , Tanzânia , Adolescente , Adulto Jovem , Método Duplo-Cego
5.
Front Immunol ; 14: 1186478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529048

RESUMO

Introduction: The primary goal of this work is to broaden and enhance the options for induction of protective CD8+ T cells against HIV-1 and respiratory pathogens. Methods: We explored the advantages of the parainfluenza virus 5 (PIV5) vector for delivery of pathogen-derived transgenes alone and in combination with the in-human potent regimen of simian adenovirus ChAdOx1 prime-poxvirus MVA boost delivering bi-valent mosaic of HIV-1 conserved regions designated HIVconsvX. Results: We showed in BALB/c mice that the PIV5 vector expressing the HIVconsvX immunogens could be readily incorporated with the other two vaccine modalities into a single regimen and that for specific vector combinations, mucosal CD8+ T-cell induction was enhanced synergistically by a combination of the intranasal and intramuscular routes of administration. Discussion: Encouraging safety and immunogenicity data from phase 1 human trials of ChAdOx1- and MVA-vectored vaccines for HIV-1, and PIV5-vectored vaccines for SARS-CoV-2 and respiratory syncytial virus pave the way for combining these vectors for HIV-1 and other indications in humans.


Assuntos
Adenovirus dos Símios , COVID-19 , HIV-1 , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Humanos , Adenovirus dos Símios/genética , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , SARS-CoV-2
6.
Lancet Infect Dis ; 23(12): 1408-1417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544326

RESUMO

BACKGROUND: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.


Assuntos
Adenovirus dos Símios , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Adulto , Doença pelo Vírus Ebola/prevenção & controle , Pan troglodytes , Uganda , Sudão , Ebolavirus/genética , Anticorpos Antivirais , Adenovirus dos Símios/genética , Adenoviridae/genética , Glicoproteínas , Imunogenicidade da Vacina , Método Duplo-Cego
7.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515291

RESUMO

In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses (AdVs) by DNA-dependent DNA polymerase (pol)-, or hexon-based screening PCR assays. Based on analysis of partial deduced amino acid sequences of Pol- and hexon- of nine AGM AdVs, at least two AdV genetic variants (group-I: seven AdVs with a Simian mastadenovirus-F (SAdV-F)/SAdV-18-like Pol and hexon, and group-II: two AdVs with a SAdV-F/SAdV-18-like Pol and a Human mastadenovirus-F (HAdV-F)/HAdV-40-like hexon) were identified, which was corroborated by analysis of the nearly complete putative Pol, complete hexon, and partial penton base sequences of a representative group-I (strain KNA-08975), and -II (KNA-S6) AdV. SAdV-F-like AdVs were reported for the first time in free-roaming non-human primates (NHPs) and after ~six decades from captive NHPs. Molecular characterization of KNA-S6 (and the other group-II AdV) indicated possible recombination and cross-species transmission events involving SAdV-F-like and HAdV-F-like viruses, corroborating the hypothesis that the evolutionary pathways of HAdVs and SAdVs are intermingled, complicated by recombination and inter-species transmission events, especially between related AdV species, such as HAdV-F and SAdV-F. To our knowledge, this is the first report on detection and molecular characterization of AdVs in AGMs.


Assuntos
Adenovírus Humanos , Adenovirus dos Símios , Animais , Chlorocebus aethiops , Adenoviridae/genética , Adenovirus dos Símios/genética , Primatas , Filogenia , Recombinação Genética
8.
Microbiol Spectr ; 11(4): e0088023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347197

RESUMO

Recombinant adenovirus vectors have been widely used in vaccine development. To overcome the preexisting immunity of human adenovirus type 5 (Ad5) in populations, a range of chimpanzee or rare human adenovirus vectors have been generated. However, these novel adenovirus vectors mediate the diverse immune responses in the hosts. In this study, we explored the immune mechanism of differential antibody responses to SARS-CoV-2 S protein in mice immunized by our previously developed two novel simian adenovirus type 23 (Sad23L) and human adenovirus type 49 (Ad49L), and Ad5 vectored COVID-19 vaccines. Sad23L-nCoV-S and Ad5-nCoV-S vaccines induced the low level of interferon-α (IFN-α) and the high level of antigen-specific antibody responses in wild-type and IFN-α/ß receptor defective (IFNAR-/-) C57 mice, while Ad49L-nCoV-S vaccine induced the high IFN-α and low antibody responses in C57 mice but the high antibody response in IFNAR-/- mice. In addition, the high antibody response was detected in natural killer (NK) cells-blocked but the low in follicular helper T (TFH) cells -blocked C57 mice immunized with Ad49L-nCoV-S vaccine. These results showed that Ad49L vectored vaccine stimulated IFN-α secretion to activate NK cells, and then reduced the number of TFH cells, generation center (GC) B cells and plasma cells, and subsequently reduced antigen-specific antibody production. The different novel adenovirus vectors could be selected for vaccine development according to the need for either humoral or cellular or both immune protections against a particular disease. IMPORTANCE Novel adenovirus vectors are an important antigen delivery platform for vaccine development. Understanding the immune diversity between different adenoviral vectors is critical to design the proper vaccine against an aim disease. In this study, we described the immune mechanism of Sad23L and Ad49L vectored vaccines for raising the equally high specific T cell response but the different level of specific antibody responses in mice. We found that Ad49L-vectored vaccine initiated the high IFN-α and activated NK cells to inhibit antibody response via downregulating the number of CD4+ TFH cells leading to the decline of GC B cells and plasma cells.


Assuntos
Adenovírus Humanos , Adenovirus dos Símios , COVID-19 , Humanos , Animais , Camundongos , Formação de Anticorpos , Vacinas contra COVID-19 , Interferon-alfa/genética , SARS-CoV-2 , Adenovirus dos Símios/genética , Adenovírus Humanos/genética , Células Matadoras Naturais , Vetores Genéticos , Adenoviridae/genética
9.
Viruses ; 15(6)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376670

RESUMO

Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.


Assuntos
Infecções por Adenoviridae , Adenovirus dos Símios , Infecções por Enterovirus , Enterovirus , Animais , Humanos , Macaca fascicularis , Adenovirus dos Símios/genética , Tailândia/epidemiologia , Macaca mulatta , Adenoviridae , Infecções por Adenoviridae/veterinária , Fezes , Filogenia
10.
Infect Genet Evol ; 108: 105403, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610683

RESUMO

Although the occurrence of three fiber genes in monkey adenoviruses had already been described, the relatedness of the "extra" fibers have not yet been discussed. Here we report the genome analysis of two simian adenovirus (SAdV) serotypes from Old World monkeys and the phylogenetic analysis of the multiple fiber genes found in these and related AdVs. One of the newly sequenced serotypes (SAdV-2), isolated from a rhesus macaque (Macaca mulatta), was classified into species Human mastadenovirus G (HAdV-G), while the other serotype (SAdV-17), originating from a grivet (Chlorocebus aethiops), classified to Simian mastadenovirus F (SAdV-F). We identified unique features in the gene content of these SAdVs compared to those typical for other members of the genus Mastadenovirus. Namely, in the E1B region of SAdV-2, the 19K gene was replaced by an ITR repetition and a copy of the E4 ORF1 gene. Among the 37 genes in both SAdVs, three genes of different lengths, predicted to code for the cellular attachment proteins (the fibers), were found. These proteins exhibit high diversity. Yet, phylogenetic calculations of their conserved parts could reveal the probable evolutionary steps leading to the multiple-fibered contemporary HAdV and SAdV species. Seemingly, there existed (a) common ancestor(s) with two fiber genes for the lineages of the AdVs in species SAdV-B, -E, -F and HAdV-F, alongside a double-fibered ancestor for today's SAdV-C and HAdV-G, which later diverged into descendants forming today's species. Additionally, some HAdV-G members picked up a third fiber gene either to the left-hand or to the in-between position from the existing two. A SAdV-F progenitor also obtained a third copy to the middle, as observed in SAdV-17. The existence of three fiber genes in these contemporary AdVs brings novel possibilities for the design of optimised AdV-based vectors with potential multiple target binding abilities.


Assuntos
Adenovirus dos Símios , Mastadenovirus , Animais , Humanos , Chlorocebus aethiops , Adenoviridae , Macaca mulatta , Filogenia , Adenovirus dos Símios/genética , Mastadenovirus/genética
11.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
12.
Front Immunol ; 13: 1063679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569867

RESUMO

Most if not all vaccine candidates developed to combat COVID-19 due to SARS-CoV-2 infection are administered parenterally. As SARS-CoV-2 is transmitted through infectious respiratory fluids, vaccine-induced mucosal immunity could provide an important contribution to control this pandemic. ChAd-SARS-CoV-2-S (BBV154), a replication-defective chimpanzee adenovirus (ChAd)-vectored intranasal (IN) COVID-19 vaccine candidate, encodes a prefusion-stabilized version of the SARS-CoV-2 spike protein containing two proline substitutions in the S2 subunit. We performed preclinical evaluations of BBV154 in mice, rats, hamsters and rabbits. Repeated dose toxicity studies presented excellent safety profiles in terms of pathology and biochemical analysis. IN administration of BBV154 elicited robust mucosal and systemic humoral immune responses coupled with Th1 cell-mediated immune responses. BBV154 IN vaccination also elicited potent variant (omicron) cross neutralization antibodies. Assessment of anti-vector (ChAd36) neutralizing antibodies following repeated doses of BBV154 IN administration showed insignificant titers of ChAd36 neutralizing antibodies. However, the immune sera derived from the same animals displayed significantly higher levels of SARS-CoV-2 virus neutralization (p<0.003). We also evaluated the safety and immunogenicity of heterologous prime-boost vaccination with intramuscular (IM) COVAXIN-prime followed by BBV154 IN administration. COVAXIN priming followed by BBV154 IN-booster showed an acceptable reactogenicity profile comparable to the homologous COVAXIN/COVAXIN or BBV154/BBV154 vaccination model. Heterologous vaccination of COVAXIN-prime and BBV154 booster also elicited superior (p<0.005) and cross variant (omicron) protective immune responses (p<0.013) compared with the homologous COVAXIN/COVAXIN schedule. BBV154 has successfully completed both homologous and heterologous combination schedules of human phase 3 clinical trials and received the restricted emergency use approval (in those aged above 18 years) from the Drugs Controller General of India (DCGI).


Assuntos
Adenovirus dos Símios , COVID-19 , Cricetinae , Humanos , Animais , Camundongos , Coelhos , Ratos , Idoso , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes
13.
Front Immunol ; 13: 949248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059554

RESUMO

To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.


Assuntos
Adenovirus dos Símios , COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunização , Macaca , Camundongos , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados
14.
Lancet Microbe ; 3(9): e663-e671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907430

RESUMO

BACKGROUND: Rabies kills around 60 000 people each year. ChAdOx2 RabG, a simian adenovirus-vectored rabies vaccine candidate, might have potential to provide low-cost single-dose pre-exposure rabies prophylaxis. This first-in-human study aimed to evaluate its safety and immunogenicity in healthy adults. METHODS: We did a single-centre phase 1 study of ChAdOx2 RabG, administered as a single intramuscular dose, with non-randomised open-label dose escalation at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Healthy adults were sequentially allocated to groups receiving low (5 × 109 viral particles), middle (2·5 × 1010 viral particles), and high doses (5 x 1010 viral particles) of ChAdOx2 RabG and were followed up to day 56 after vaccination. The primary objective was to assess safety. The secondary objective was to assess immunogenicity with the internationally standardised rabies virus neutralising antibody assay. In an optional follow-up phase 1 year after enrolment, we measured antibody maintenance then administered a licensed rabies vaccine (to simulate post-exposure prophylaxis) and measured recall responses. The trial is registered with ClinicalTrials.gov, NCT04162600, and is now closed to new participants. FINDINGS: Between Jan 2 and Oct 28, 2020, 12 adults received low (n=3), middle (n=3), and high doses (n=6) of ChAdOx2 RabG. Participants reported predominantly mild-to-moderate reactogenicity. There were no serious adverse events. Virus neutralising antibody concentrations exceeded the recognised correlate of protection (0·5 IU/mL) in three middle-dose recipients and six high-dose recipients within 56 days of vaccination (median 18·0 IU/mL). The median peak virus neutralising antibody concentrations within 56 days were 0·7 IU/mL (range 0·0-54·0 IU/mL) for the low-dose group, 18·0 IU/mL (0·7-18·0 IU/mL) for the middle-dose group, and 18·0 IU/mL (6·0-486·0 IU/mL) for the high-dose group. Nine participants returned for the additional follow-up after 1 year. Of these nine participants, virus neutralising antibody titres of more than 0·5 IU/mL were maintained in six of seven who had received middle-dose or high-dose ChAdOx2 RabG. Within 7 days of administration of the first dose of a licensed rabies vaccine, nine participants had virus neutralising antibody titres of more than 0·5 IU/mL. INTERPRETATION: In this study, ChAdOx2 RabG showed an acceptable safety and tolerability profile and encouraging immunogenicity, supporting further clinical evaluation. FUNDING: UK Medical Research Council and Engineering and Physical Sciences Research Council.


Assuntos
Adenovirus dos Símios , Vacina Antirrábica , Raiva , Adenovirus dos Símios/genética , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Raiva/prevenção & controle , Vacina Antirrábica/efeitos adversos
15.
Vaccine ; 40(35): 5248-5262, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35715352

RESUMO

Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.


Assuntos
Adenovirus dos Símios , Vacinas contra COVID-19 , COVID-19 , Infecção por Zika virus , Zika virus , Adenovirus dos Símios/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Masculino , Medição de Risco , SARS-CoV-2/genética
16.
Viruses ; 14(3)2022 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-35336953

RESUMO

Gene therapy and vaccine development need more novel adenovirus vectors. Here, we attempt to provide strategies to construct adenovirus vectors based on restriction-assembly for researchers with little experience in this field. Restriction-assembly is a combined method of restriction digestion and Gibson assembly, by which the major part of the obtained plasmid comes from digested DNA fragments instead of PCR products. We demonstrated the capability of restriction-assembly in manipulating the genome of simian adenovirus 1 (SAdV-1) in this study. A PCR product of the plasmid backbone was combined with SAdV-1 genomic DNA to construct an infectious clone, plasmid pKSAV1, by Gibson assembly. Restriction-assembly was performed repeatedly in the steps of intermediate plasmid isolation, modification, and restoration. The generated adenoviral plasmid was linearized by restriction enzyme digestion and transfected into packaging 293 cells to rescue E3-deleted replication-competent SAdV1XE3-CGA virus. Interestingly, SAdV1XE3-CGA could propagate in human chronic myelogenous leukemia K562 cells. The E1 region was similarly modified to generate E1/E3-deleted replication-defective virus SAdV1-EG. SAdV1-EG had a moderate gene transfer ability to adherent mammalian cells, and it could efficiently transduce suspension cells when compared with the human adenovirus 5 control vector. Restriction-assembly is easy to use and can be performed without special experimental materials and instruments. It is highly effective with verifiable outcomes at each step. More importantly, restriction-assembly makes the established vector system modifiable, upgradable and under sustainable development, and it can serve as the instructive method or strategy for the synthetic biology of adenoviruses.


Assuntos
Adenovírus Humanos , Adenovirus dos Símios , Adenoviridae/genética , Adenovírus Humanos/genética , Adenovirus dos Símios/genética , Animais , DNA , Vetores Genéticos/genética , Humanos , Mamíferos
17.
Sci Rep ; 11(1): 20877, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686689

RESUMO

Adenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2-8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries. We have previously reported a novel, potentially less expensive thermostabilisation approach using a combination of simple sugars and glass micro-fibrous matrix, achieving excellent recovery of adenovirus-vectored vaccines after storage at temperatures as high as 45 °C. This matrix is, however, prone to fragmentation and so not suitable for clinical translation. Here, we report an investigation of alternative fibrous matrices which might be suitable for clinical use. A number of commercially-available matrices permitted good protein recovery, quality of sugar glass and moisture content of the dried product but did not achieve the thermostabilisation performance of the original glass fibre matrix. We therefore further investigated physical and chemical characteristics of the glass fibre matrix and its components, finding that the polyvinyl alcohol present in the glass fibre matrix assists vaccine stability. This finding enabled us to identify a potentially biocompatible matrix with encouraging performance. We discuss remaining challenges for transfer of the technology into clinical use, including reliability of process performance.


Assuntos
Adenoviridae/genética , Vacinas contra Adenovirus/química , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Potência de Vacina , Adenovirus dos Símios , Materiais Biocompatíveis , Varredura Diferencial de Calorimetria , Vidro , Células HEK293 , Humanos , Luz , Espectroscopia de Ressonância Magnética , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Álcool de Polivinil , Vacina Antirrábica , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Açúcares/química , Temperatura , Termogravimetria , Trealose/química
18.
J Virol ; 95(23): e0097421, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523968

RESUMO

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. IMPORTANCE We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibit a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative adenovirus (Ad) vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to (i) evaluate the protective efficacy of RhAd52 vaccines and (ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate that RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.


Assuntos
Vacinas contra Adenovirus/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Infecções por Adenoviridae/imunologia , Adenovirus dos Símios/imunologia , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunogenicidade da Vacina , Macaca mulatta/virologia , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/patogenicidade , Vacinação
19.
PLoS One ; 16(9): e0256980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495988

RESUMO

BACKGROUND: A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. METHODOLOGY: This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. RESULTS: In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. CONCLUSIONS: This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.


Assuntos
Vacinas contra Adenovirus/imunologia , Adenovirus dos Símios/imunologia , Antígenos de Protozoários/imunologia , DNA de Protozoário/imunologia , DNA Recombinante/imunologia , Imunização Secundária/métodos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Vacinas contra Adenovirus/administração & dosagem , Vacinas contra Adenovirus/efeitos adversos , Adenovirus dos Símios/genética , Adulto , Antígenos de Protozoários/genética , Linfócitos T CD8-Positivos/imunologia , DNA de Protozoário/genética , Epitopos/genética , Epitopos/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Adulto Jovem
20.
BMJ Case Rep ; 14(4)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888484

RESUMO

Prevention strategies for COVID-19 transmission are at the forefront of healthcare paradigms worldwide, the main emphasis of which is vaccination. We present an interesting case of a 37-year-old man who, 3 weeks following his first dose of the chimpanzee adenovirus-vectored COVID-19 vaccine, ChAdOx1, presented to hospital with a rapidly progressive ascending muscle weakness and back pain in the absence of any other triggers. He also had a negative COVID-19 swab during admission. A diagnosis of Guillain-Barre syndrome was confirmed by correlating the clinical features with cerebrospinal fluid analysis, nerve conduction studies and MRI of the brain and whole spine. The patient received treatment with 5 days of intravenous immunoglobulin and did not require any respiratory support. He was also regularly reviewed by a multidisciplinary team consisting of neurologists, speech and language therapists, and physiotherapists and is on the course to a recovery.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19 , Síndrome de Guillain-Barré/induzido quimicamente , Adenovirus dos Símios , Adulto , Animais , ChAdOx1 nCoV-19 , Humanos , Masculino , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...